

Autonomous Control for Coordination of Distributed Source Converters and Microgrid

LIU Jinjun

Tutorial at PESA Sept. 20th, 2022

Outline

- Background
- Basics of Coordinative Control
- Coordinative Control of Distributed Source Converters
 - Secondary Control for Frequency Restoration
 - Reactive, Unbalanced and Harmonic Power Sharing
 - Selection of Small-AC-Signal
 - Successive Approximation for Power Sharing
- Coordinative Control at Microgrid Level
 - Transfer of Control Strategies
 - Flexible Transfer Converter

Developing Trends of Electric Power Systems

• There are 2 features that will bring revolutionary changes to how power system is configured, organized and operated.

More distributed generation

 More and more distributed generations will be employed to better incorporate renewable energies and to achieve higher reliability and lower transmission losses.

More electronic

More and more power electronic converters will be used in power system:
 More electronic power system / Electronified power system.

Challenges to the coordination of energy source converters and microgrid

- Relatively small number of big generators to be coordinated
- Natural self-synchronization and power sharing of rotating-machine-based generators

- Could be a large number of energy source converters to be coordinated
- Need to also coordinate frequent transfer between islanded mode and gridconnected mode

- Coordination of parallel energy source converters
 - Adequate power sharing among parallel inverters
 - Bus voltage within a nominal magnitude/frequency range

With communication

PEREC

Without communication → Truly autonomous

- Plug and play
- **©** Improved reliability

Coordinative control without communication

- ⊗ Master-dependent reliability
- 😕 Large power rating of master
- Every constraint to the send of distribution line

Droop control in DC power systems

• Power can be automatically shared between parallel DGs with proper droop gains.

Droop control in DC power systems

Droop Scheme #1 Programmable voltage droop with finite DC loop gain

Droop control in DC power systems

Droop Scheme #2 Programmable voltage droop with infinite DC loop gain

Droop control in AC power systems

When the impedance of distribution line is purely inductive, $\theta_n = 90^\circ$

As ϕ_n is very small, so further simplification can be done

$$\begin{cases} P_n = \frac{E_n U_L \sin \phi_n}{Z_n} \sin \theta_n + \frac{U_L (E_n \cos \phi_n - U_L)}{Z_n} \cos \theta_n \\ Q_n = -\frac{E_n U_L \sin \phi_n}{Z_n} \cos \theta_n + \frac{U_L (E_n \cos \phi_n - U_L)}{Z_n} \sin \theta_n \end{cases} \end{cases}$$

$$\begin{cases} P_n = \frac{E_n U_L \sin \phi_n}{Z_n} \\ Q_n = \frac{U_L \left(E_n \cos \phi_n - U_L \right)}{Z_n} \end{cases} \end{cases}$$

$$\begin{cases} P_n = \frac{E_n U_L \phi_n}{Z_n} & \text{Small-signal} \\ \text{linearization} \\ Q_n = \frac{U_L (E_n - U_L)}{Z_n} & \text{Small-signal} \\ & \text{linearization} \\ & \Delta Q_n \approx \frac{U_L}{Z_n} \Delta E_n \end{cases}$$

• The real and reactive power could be controlled by controlling respectively the frequency and voltage amplitude.

Droop control in AC power systems

Control characteristics $\omega = \omega_0 - k_p (P - P_0)$ $E = E_0 - k_q (Q - Q_0)$

A droop-controlled inverter can be regarded as a current source with limited regulation gain and bandwidth.

Droop control in DC power systems

Droop Scheme #2 Programmable voltage droop with infinite DC loop gain

 A droop-controlled converter can be regarded as a current source with limited regulation gain and bandwidth.

- Practical application of droop control: HYEE Project
 - Trade-off between power sharing & voltage regulation → Careful design of droop gains

Technical parameters	
Power rating	240 kVA
Power factor	0.85
Voltage deviation range	±5%
Frequency deviation range	±2%

PEREC

- Frequency and voltage deviation caused by the maximum power should be limited within the allowable range.
- The calculated droop gains might be decreased properly in order to stabilize the system.

Experiments

Droop Control: Synchronization & Active Power Sharing

- Improving coordination performance with advanced control:
 - Secondary Control for Frequency Restoration
 - Reactive, Unbalanced and Harmonic Power Sharing
 - Selection of Small-AC-signal
 - Successive Approximation for Power Sharing

PEREC

Compromise between power sharing and voltage regulation

- When droop control is employed, compromise exists between the power sharing accuracy and the voltage regulation rate.
 - Low droop gain results in a bad accuracy of power sharing.
 - High droop gain results in a bad voltage regulation rate.

PI regulator based decentralized secondary control

PEREC

Washout filter-based control

- **APF**: distribute power by droop control (**Fast**)
- LPF: restore the frequency (Slow)

Oisturbances (e.g., new inverter plugging in) will result in **unequal active power sharing**.

M. Yazdanian and A. Mehrizi-Sani, "Washout Filter-Based Power Sharing," IEEE Trans. on Smart Grid, vol. 7, no. 2, pp. 967-968, 2016.

Y. Han, H. Li, L. Xu, X. Zhao, and J. M. Guerrero, "Analysis of Washout Filter-Based Power Sharing Strategy—An Equivalent Secondary Controller for Islanded Microgrid Without LBC Lines," *IEEE Trans. on Smart Grid*, vol. 9, no. 5, pp. 4061-4076, 2018.

Rethinking of droop control

PEREC

- Frequency is drooped with active power
- The **inherent integration of frequency** difference leads to a common steady-state frequency for all inverters
- A common frequency leads to good active power sharing

Why not build a droop relation between a frequency variable and the variable to be shared?

Decentralized secondary control based on small-AC-signal injection

SACS frequency: global variable!

• Fundamental voltage is droop controlled:

$$\omega^* = \omega_0 - k_p \left(P - P_0 - \Delta P_0 \right)$$
$$E^* = E_0 - k \left(O - O_0 \right)$$

 The Small-AC-signal (SACS) frequency is drooped with the compensation value of nominal active power:

$$\omega_{ss}^* = \omega_{ss0} - k_{ss} \Delta P_0$$

 The compensation value of nominal active power is the summation of SACS active power and Pl output :

$$\varepsilon_{P_0} = \left(k_{p\omega} + \frac{k_{i\omega}}{s}\right) \left(\omega_0 - \omega^*\right)$$
$$\Delta P_0 = \varepsilon_{P_0} + G_p P_{ss}$$

Decentralized secondary control based on small-AC-signal injection

Simulation results

Decentralized secondary control based on small-AC-signal injection

Experimental results

SACS injection-based control

Decentralized secondary control based on small-AC-signal injection

Summaries

- Deviation of fundamental frequency can be effectively compensated
- Active power demand can still be equally shared
- Communication links are not required

T. Wu, Z. Liu, J. Liu, B. Liu, S. Wang, "Small AC Signal Droop Based Secondary Control for Microgrids," 31st Annual IEEE Appl. Power Electron. Conf. Expo., 2016, pp. 3370-3375.

B. Liu, T. Wu, Z. Liu and J. Liu, "A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids," *IEEE Trans. Power Electron.*, vol. 35, no. 11, pp. 11634-11651, Nov. 2020.

PEREC

Reactive, Unbalanced and Harmonic Power Sharing

Power Sharing Issues

• *P* sharing is always guaranteed by the global fundamental frequency

• *Q* sharing is determined by the mismatched line impedances

Conventional droop control and virtual impedance

Loads

Load

Load

Load

- Conventional droop control
 - Improve Q sharing

Z)

Distributed

Sources

€+\$

Ę

DG1

DG2

DG n

PEREC

- Equivalent to 'virtual impedance'
 - Introduce large voltage drop
 - Can't realize accurate Q sharing

Impedance

Network

 Z_1

 Z_2

 Z_n

Power Distribution & Virtual Impedance Control

PEREC

Power Distribution & Virtual Impedance Control

PEREC

- How about adding small and unequal virtual impedances to compensate for the mismatch?
- Power sharing -> differences of virtual impedances
- Voltage drop and THD -> average virtual impedance

These two control targets are Decoupled!

- Power sharing & bus voltage control:
 - Not single-inverter behavior, but coordination of all distributed energy sources

Small-AC-signal injection-based control

- How to obtain proper virtual impedances to compensate for the mismatch?
- *P* ω droop
 principle

PEREC

Q_T - *ω_{ss}* droop
 introduced

 $Q_T = \sqrt{Q^2 + Q_{UH}^2}$

Small-AC-signal injection-based control

• **Droop relationship** between frequency of small-AC-signal and *Q* and *Q*_{UH}

$$\omega_{ss}^* = \omega_{ss0} + k_{ss}\sqrt{Q^2 + Q_{UH}^2}$$

- ω_{ss}^* : small signal frequency reference value
- ω_{ss0} : small signal frequency rated value
- k_{ss} : droop coefficient

PEREC

• Linking active power of small signal with virtual impedance

$$Z_{v} = Z_{v0} + k_Z P_{ss}$$

Still impact the PCC voltage quality

- Z_{ν} : virtual impedance.
- Z_{v0} : preactivated virtual impedance value
- k_Z : coupling coefficient

Small-AC-signal injection-based control

PEREC

Small-AC-signal injection-based control

PEREC

$$P_{ssave} = \left(\frac{E_{ss0}}{E_0}\right)^2 P_{ave} = \left(\frac{E_{ss0}}{E_0}\right)^2 P_1 = \left(\frac{E_{ss0}}{E_0}\right)^2 P_2 = \cdots$$

$$Z_v = Z_{v0} + k_Z P_{ss}$$

$$Q_v = Z_{v0} + k_Z P_{ss}$$

$$Z_v' = Z_{v0} + k_Z P_{ss}' \quad P_{ss}' = P_{ss} - \left(\frac{E_{ss0}}{E_0}\right)^2 P_z$$

- The virtual impedances balance original line impedances
- The degradation of bus voltage quality caused by virtual impedance is eliminated

PEREC

Reactive, Unbalanced and Harmonic Power Sharing

Small-AC-signal injection-based control

Experimental results

- Equal power sharing
 - Power Rating $S_1: S_2: S_3 = 1:1:1$
 - Feeder Impedance $L_1 = 1.2 \text{ mH}, L_2 = 3.5 \text{ mH}, L_3 = 4.6 \text{ mH}$

Output reactive, unbalanced and harmonic power of three inverters

Output currents after SACS injected

Small-AC-signal injection-based control

Simulation results

Small-AC-signal injection-based control

Simulation results

Practical application: KEHUA Project

PEREC

• Accurate power sharing achieved after the small-signal injection-based control applied.

Technical parameters	
Power rating	100kVA
INV #1 inductance in series	15µH
INV #2 inductance in series	15µH
INV #3 inductance in series	18µH

Phase-B current before SACS control applied

Phase-B current after SACS control applied
Reactive, Unbalanced and Harmonic Power Sharing

Small-AC-signal injection-based control

Summaries

- Reactive, unbalanced and harmonic power can be equally or proportionally shared among inverters.
- Plug and play, no communication link or central controller is needed.
- No need to measure feeder impedance, and compatible with conventional droop control.
- Impacts of virtual impedances on PCC voltage quality can be eliminated by proper design.

B. Liu, Z. Liu, J. Liu, R. An, H. Zheng, and Y. Shi, "An Adaptive Virtual Impedance Control Scheme Based on Small-AC-Signal Injection for Unbalanced and Harmonic Power Sharing in Islanded Microgrids," in *IEEE Transactions on Power Electronics*, vol. 34, no. 12, pp. 12333-12355, 2019.
R. An, Z. Liu, J. Liu and B. Liu, "A Comprehensive Solution to Decentralized Coordinative Control of Distributed Generations in Islanded Microgrid Based on Dual-Frequency-Droop," in *IEEE Transactions on Power Electronics*, vol. 37, no. 3, pp. 3583-3598, March 2022.

- Selection of the amplitude for small-AC-signal
 - Trade-off between power quality consideration and the difficulty to extract the SACS.
 - IEEE Std 519-2014 establishes harmonic limits on voltage as 8% for THD and 5% of the fundamental voltage for any single harmonic voltage
 - The amplitude of rated fundamental voltage in experiments is **200V.**
 - Given some margins, the amplitude of the small AC signal is set as 2V, which could guarantee both the THD and the distortion of any single harmonic below 2%.

- Selection of the frequency for small-AC-signal
 - Avoid frequency of pre-existing harmonics
 (6k ± 1)th-order harmonics usually exist due to nonlinear loads
 Other harmonics due to modulation effects
 - Avoid frequency of inter-harmonics
 Standard for inter-harmonics is more rigorous
 - Avoid high frequency
 ③ High frequency will be filtered out by the output L-C filter (f_c = 700 Hz)
 - Avoid low frequency

^(C) Low frequency is **difficult to be extracted** from the fundamental signal

ARE THESE ENOUGH?

Phenomenon description

- Reference SACS voltage is used to calculate the power:
 - Output currents contain another component near the SACS frequency
 - Its frequency is so close to the SACS that can hardly be removed by the MSOGI-QSG

- Phenomenon description
- Ripples disappear when nonlinear loads are disconnected
- Ripple frequency changes with the SACS frequency f_{ss} and fundamental frequency f
- Ripples of DGs are in phase, not circulating

- Fix *f* at 50 Hz and tune *f*_{ss} from 100 Hz to 350 Hz:
 - → f_{ss} around 150 Hz: ripple frequency is exactly the difference between 150 Hz and f_{ss}
 e.g., when f_{ss} = 149 or 151 Hz, ripple frequency is 1 Hz;
 - → f_{ss} around 200 Hz: ripple frequency is twice the difference between 200 Hz and f_{ss} e.g., when f_{ss} = 199 or 201 Hz, ripple frequency is 2 Hz;
 - → f_{ss} around 100 or 300 Hz: no obvious low-frequency ripple

Analysis of the cause of ripples

- It is true that different AC components in output voltage are independent in linear systems
- With **nonlinear loads, i.e., three-phase diode rectifiers**, will they be coupled together and generate **new frequency components**?
 - Give the expressions of AC voltages & check components in AC currents
 - KEY: How to express its commutation characteristics?

Obtain the mapping function $s_x(t)$ through calculating the commutation points

PEREC

Selection of Small-AC-Signal

Analysis of the cause of ripples

Z. Bing, K. J. Karimi and J. Sun, "Input Impedance Modeling and Analysis of Line-Commutated Rectifiers," *IEEE Trans. Power Electron.*, vol. 24, no. 10, pp. 2338-2346, Oct. 2009.

Example 1: *f*_{ss} around 200 Hz

 $v_{dc}(t) = s_a(t)v_a(t) + s_b(t)v_b(t) + s_c(t)v_c(t)$

 $i_x(t) = s_x(t)i_{dc}(t)$ (x = a, b, c)

REC

Fourier

$$\mathbf{V}_{dc}(j2\pi f) = \sum_{x=a,b,c} \mathbf{S}_{x}(j2\pi f) * \mathbf{V}_{x}(j2\pi f)$$

$$\mathbf{I}_{dc}(j2\pi f) = \frac{\mathbf{V}_{dc}(j2\pi f)}{\mathbf{Z}_{dc}(j2\pi f)}$$

$$\mathbf{I}_{x}(j2\pi f) = \mathbf{S}_{x}(j2\pi f) * \mathbf{I}_{dc}(j2\pi f) \quad (x = a, b, c)$$

• In this case, ripples are mainly caused by interaction between fundamental wave and SACS

$$\mathbf{V}_{\mathbf{a}}[i] = \begin{cases} \frac{V}{2} e^{\pm j\frac{\pi}{2}}, & i = \pm f \\ \frac{V_{ss}}{2} e^{\pm j\frac{\pi}{2}}, & i = \pm f \\ \frac{V_{ss}}{2} e^{\pm j\frac{\pi}{6}}, & i = \pm f \\ \frac{V_{ss}} e^{\pm j\frac{\pi}{6}}, & i = (6k \pm 1)f \\ \frac{V_{ss}} e^{\pm j\frac{\pi}{6}}, & i = (6k \pm 1)f \\ \frac{V_{ss}} e^{\pm j\frac{\pi}{6}}, & i = 2kf \pm f_{ss} \end{cases}$$

Example: *f*_{ss} around 200 Hz

 $v_{dc}(t) = s_a(t)v_a(t) + s_b(t)v_b(t) + s_c(t)v_c(t)$

 $i_x(t) = s_x(t)i_{dc}(t)$ (x = a, b, c)

 $\mathbf{I}_{\mathbf{x}}(j2\pi f) = \mathbf{S}_{\mathbf{x}}(j2\pi f) * \mathbf{I}_{\mathbf{dc}}(j2\pi f) \quad (x = a, b, c)$

• Ripple frequency is **twice** the difference between *f*_{ss} and **200 Hz** (*f*_{ss0})

• Assume f = 50 Hz and $f_{ss} = f_{ss0} + \Delta f$, then figure out if $f_{ss0} - \Delta f$ can be generated

Design guidelines of SACS frequency

 $(f = 50.016 \text{ Hz} \& f_{ss} = 150, 200, 300, 400 \text{ Hz})$

- In practice, f_{ss} and f are drooped respectively, so f_{ss} is not exactly multiple of f
 - 1) Avoid $(6k + 4)f_0$ (k is non-negative integer), or there will be ripples due to the **nonlinear loads and the injected SACS**.
 - 2) Avoid $(6k + 3)f_0$, or there will be ripples due to the **nonlinear and unbalanced loads**.
 - 3) The f_{ss0} is recommended to be selected as **300, 400 or 100 Hz**.
 - 4) Avoid pre-existing harmonics.
 - 5) Avoid inter-harmonics or subharmonics, unless the mentioned harmonics already exist, because the limitations for them are more rigorous.
 - 6) Avoid high or low frequencies.

Selection of SACS frequency

Summaries

- Causes of steady-state ripples on virtual impedance waveforms are analyzed in theory and verified by simulation and experiment results.
- Guideline to eliminate these ripples is provided accordingly.
- These conclusions obtained are also applicable to other SACS-based methods.

R. An, Z. Liu, J. Liu and B. Liu, "A Comprehensive Solution to Decentralized Coordinative Control of Distributed Generations in Islanded Microgrid Based on Dual-Frequency-Droop," in *IEEE Transactions on Power Electronics*, vol. 37, no. 3, pp. 3583-3598, March 2022.

Other way to obtain proper virtual impedance

- SACS injection & extraction
- More control objectives? More SACSs needed
- Several parameters to be designed
-

PEREC

• Other way to obtain proper virtual impedance?

Virtual impedance tuning

PEREC

- How to let a DG know its own direction for virtual impedance tuning?
- Introduce integral into reactive power control loop adaptive virtual impedance (AVI)

$$L_{\rm v} = k_{\rm avi} \int_{t_0}^t (Q - Q_0) d\tau$$

• Ideally, Q₀ for each DG should be equal to the average reactive power demand

Hard to realize without high-bandwidth communication in existing solutions

Successive Approximation for Power Sharing

System perspective

 Possible solution: tuning the virtual impedance from a system perspective and through a progressive process?

- Estimate a more desirable operation point with droop control
- Move toward it by tuning virtual impedances
- Repeat this procedure
- The virtual impedances will finally successively approximate appropriate values

PEREC

Successive-approximation-based virtual impedance tuning

- Each DG successively tunes its virtual impedances in a common sequence
- The average of virtual impedances is kept near 0, minimizing the voltage deviations
- Simple to implement, compatible with conventional droop control

What should be noticed in practical applications?

Successive-approximation-based virtual impedance tuning

PEREC

- Extension to distributed microgrid
 - **Continuous virtual impedance tuning** to adapt to load changes
 - Amplitude limiting of virtual impedance to constrain the average virtual impedance when system parameter drift
- Virtual impedances for unbalanced and harmonic power sharing

Successive-approximation-based virtual impedance tuning

- Autonomous triggering and synchronization of DG internal time sequence
 - Monitoring bus voltage to learn the common sequence before plugging in
 - Differences in DSP crystal frequencies may cause drifting of DGs' sequences
 - Using multiples of fundamental cycle as a reference for mode switching
- Compensation for sequence delays
- Dead time between two modes

EREC

Successive-approximation-based virtual impedance tuning

Experimental results

PEREC

Reactive power equal sharing

Reactive power proportional sharing

Successive-approximation-based virtual impedance tuning

Experimental results

Voltage reference

PEREC

Reactive power sharing

Robust to time sequence difference

PEREC

Successive-approximation-based virtual impedance tuning

Simulation results

Successive-approximation-based virtual impedance tuning

Summaries

- Effectively compensating the mismatched line impedances to achieve accurate power sharing
- Balancing the original line impedances, no extra voltage amplitude deviations at the PCC
- Easy implementation, plug and play, especially suitable for application scenarios with a large number of sources
- Minimizing the dependency on communications

Coordinative Control at Microgrid Level

Microgrid

 a localized group of sources and loads with the capability to operate either as a gridconnected or as an islanded system

• Grid-connected(GC) Mode

 DGs work together to achieve voltage regulation and supply local loads

Stand-alone(SA) Mode (Islanded Mode)

- DGs output power according to the demands from upper level control
- Transition Process

Seamless transfer between GC and SA operation modes

DG control

methods

Power stage (Physical Connection)

Coordinative Control at Microgrid Level

Droop control in GC mode

Control characteristics $\omega = \omega_0 - k_p (P - P_0)$ $E = E_0 - k_q (Q - Q_0)$

- Bus voltage is clamped by the grid voltage in GC Mode
- **DG output power** is also determined by the grid
 - When the grid is normal, i.e., $\omega_g = \omega_0$, there is $P = P_{00}$
 - When the **grid frequency deviates and fluctuates**, i.e., $\omega_g \neq \omega_0$;
 - since k_p is small, the difference between P and P_0 is large, and continuously changing.
 - when the **grid voltage is distorted**, the DG output current would contain harmonics
- **Poor dynamic performance** for power tracking

PEREC

- Hybrid current and voltage mode control
 - Transfer DG control structures according to system operating states

- SA Mode
 - DGs provide local voltage supports
 - ➔ Voltage control mode

• GC Mode

- Strong external voltage source
- Current control mode

PEREC

- Hybrid current and voltage mode control
 - Transfer DG control structures according to system operating states

- Our Control Control
- Rely on islanding detection methods or communication with the grid interface to obtain the real-time operating state
- Oblight Scheme Stress Scheme Stress Scheme Schem

Detailed process from GC to SA state

Indirect current control

- limiters in the control blocks become saturated or desaturated
 - When islanding occurs, the change of operating states cause the saturation of limiter; the inverter changes from linear control region to nonlinear control region to realize autonomous transfer of control strategies
 - When the fault is cleared, the inverter returns to the linear control region.
- Seamless transfer & not rely on islanding detection

Control block of single-phase indirect current control method

Nonlinearity in the control system make it hard to design

- Load voltage deteriorates in case of nonlinear loads
 because of the absence of inner voltage control
- 😕 Physical meaning is not clear

J. Kwon, S. Yoon and S. Choi, "Indirect Current Control for Seamless Transfer of Three-Phase Utility Interactive Inverters," in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 773-781, Feb. 2012

- A universal controller with seamless transfer capability
 - How to avoid these drawbacks?

PEREC

- Improved indirect current control:
 - S_u is controlled by the grid.
 - S_i is controlled by the microgrid.
 - Autonomously transfer DG control structures according to the model of three-phase DG system in the SRF
 - Physical meaning is more clear
 - Synchronization of multiple inverters are considered.
 - Regulate the grid current accurately when the grid voltage is **distorted** in GC mode

PEREC

GC mode

A universal controller with seamless transfer capability

- Grid current loop + capacitor voltage loop + inductor current loop
 - Grid current is not limited.
 - QR controllers are used to suppress 5th and 7th harmonics.

A universal controller with seamless transfer capability

GC mode to SA mode

PEREC

- t_1 : S_u turns-off, i_{gd} =0, i_{gq} =0.
- $t_1 \sim t_2$: v_{di} increases and v_{qi} decreases until $v_{di} = V_{dmax}$ and $v_{qi} = V_{qmin}$, G_{IG_QR} changes from PI controller to P controller.
- t2: islanding is detected, $G_{IG_{OR}}$ stops working to improve power quality, v_{od} and v_{oq} switch to V_{d0} and V_{q0} respectively.

PEREC

Transfer of Control Strategies

A universal controller with seamless transfer capability

SA mode – A droop relationship between i_{gq} and ω^*

$$\begin{cases} v_{Cdref} = V_{d0} + k_{gp} \cdot (i_{gdref} - i_{gd}) \\ v_{Cqref} = V_{q0} + k_{gp} \cdot (i_{gqref} - i_{gq}) \end{cases} \quad \clubsuit \quad \omega^* = \omega_0 + k_{FLL} \cdot v_{Cq} \quad \Longrightarrow \quad \omega^* - \omega_0 = k_{FLL} \cdot k_{gp} \cdot (i_{gqref} - i_{gq}) \end{cases}$$

A universal controller with seamless transfer capability

SA mode to GC mode

PEREC

- Grid voltage is restored, S_u turns-on.
- v_{od} and v_{oq} switch to v_{di} and v_{qi} .
- S_1 and S_2 switch to channel 1 for pre-synchronization.
- S_i turns-on.

A universal controller with seamless transfer capability

Experimental results

A universal controller with seamless transfer capability

Experimental results

Harmonic is inserted

After some time

A universal controller with seamless transfer capability

Experimental results

Droop control

rder	U1 [V]	hdf[%]	Order	U1 [V]	hdf[%]
otal	142.9		dc		
1	142.8	99.88	2	0.2	0.14
3	1.5	1.03	4	0.0	0.03
5	5.1	3.55	6	0.1	0.04
7	3.3	2.32	8	0.1	0.09
9	0.1	0.07	10	0.1	0.09
11	1.5	1.02	12	0.1	0.05
13	2.1	1.45	14	0.1	0.05
15	0.5	0.38	16	0.2	0.15

Proposed control

Order	U1 [V]	hdf[%]	Order	U1 [V]	hdf[%]
Total	142.9		dc		
1	142.9	99.98	2	0.2	0.16
3	1.5	1.03	4	0.1	0.04
5	0.3	0.22	6	0.0	0.03
7	0.2	0.13	8	0.1	0.05
9	0.2	0.15	10	0.1	0.05
11	1.5	1.07	12	0.0	0.03
13	1.6	1.13	14	0.1	0.07
15	0.6	0.43	16	0.2	0.13

PEREC

Practical application: KEHUA Project

• Good performance in all operating states achieved after the universal controller with seamless transfer capability applied.

Technical parameters					
Power rating	100kVA				
Line-to-line voltage	400V				
Load condition (SA to GC)	No load				
Power setpoint in GC (GC to SA)	100kW				

Transition from SA state to GC state

Transition from GC state to SA state

A universal controller with seamless transfer capability

Summaries

- The transfer of control targets between SA and GC mode is seamless
- Does not rely on islanding detection methods or communication with the grid interface to obtain the system operating states.
- The physical meaning of the Indirect Current Control is more clear for three-phase DG system in the SRF.
- In microgrid system consisting of multiple DGs, the power quality is guaranteed in case of nonlinear loads and grid distortion.

Z. Liu and J. Liu, "Indirect Current Control Based Seamless Transfer of Three-phase Inverter in Distributed Generation," *IEEE Transactions on Power Electronics*, vol. 29, no. 7, pp. 3368–3383, Jul. 2014.

X. Meng, Z. Liu, H. Zheng, and J. Liu, "A Universal Controller Under Different Operating States for Parallel Inverters With Seamless Transfer Capability," *IEEE Transactions on Power Electronics*, vol. 35, no. 9, pp. 9796–9814, Sep. 2020.

PEREC

Coordinative Control at Microgrid Level

Barrier for fully-autonomous microgrid

- When transferring from SA state to GC state, the microgrid voltage should be synchronized with the grid voltage
- Numerous dispersed sources are far from the grid interface

Communication is required to send the remote information at the grid interface to each DG for pre-synchronization!

> Becomes the barrier for fullyautonomous microgrid

Conventional grid interface

• Switch:

- e.g., static transfer switch, mechanic switch, etc.
- \odot High efficiency
- ☺ Low cost
- ☺ High reliability
- ☺ High Current Carrying Capability
- Seal to control the power flow
- Hard to re-connect after faults

• Interlinking Converter (IC):

- e.g., back-to-back converter, matrix converter, UPQC, SST, etc.
- ☺ Controllable power flow
- ☺ Auxiliary services
- Low efficiency
- High cost
- Low reliability
- Power dispatch restricted by capacity

Concept of Flexible Transfer Converter (FTC)

- Enabling autonomous control of microgrids, even for re-connection
- Fast and soft disconnection/re-connection
- Possible auto-synchronization while connected and dispatching of power
- Different topologies and control strategies for normally-islanded and normally-connected microgrids

Concept of Flexible Transfer Converter (FTC)

• Three basic operating modes:

- Achieve fast and soft re-connection, dispatch power in response to grid demands or based on local measurements in the Asynchronous Connection Mode.
- Auto-synchronize both sides and smoothly transfer to the Synchronous Connection
 Mode to reduce transmission losses or handle IC capacity shortage.
- When islanding occurs, the FTC stops power dispatching and transfers to the Islanded Mode.

Asynchronous Connection Mode

- DGs need to provide voltage regulation in SA mode
- ➔ working under droop control or VSG control:

- By controlling *P*, the frequency and phase can be indirectly controlled to achieve pre-synchronization
- Bus frequency reflects mismatch between *P* and *P*₀
- Based on this, the power
 flow at the grid interface
 can be optimized

 $V = V_0 - k_q (Q - Q_0)$ · Similar for Q and V

Control of a general-purpose FTC

Simulation results

Autonomous power control

Control of a general-purpose FTC

Simulation results

Autonomous power control

Control of a general-purpose FTC

Simulation results

Auto-synchronization control

Control of a general-purpose FTC

Experimental results

Auto-synchronization process

Inrush currents on the switch

Autonomous power control

Flexible Transfer Converter

Summaries

- Compared to conventional interfaces, the FTC enhances the flexibility, reliability and efficiency, while also extending the IC's service life to its maximum extent.
- A universal FTC properly controls the power dispatch and flexibly switch the microgrid between different modes without communications with DGs.
- Universal DG control is necessary to coordinate with the FTC in a decentralized manner.
- Simplified topologies and control strategies for normally-islanded and normallyconnected FTCs is under study.

R. An, J. Liu, Z. Liu and Z. Song, "Flexible Transfer Converters Enabling Autonomous Control and Power Dispatch of Microgrids," in IEEE Transactions on Power Electronics, vol. 37, no. 11, pp. 13767-13781 R. An, J. Liu, Z. Song, Z. Liu and Y. P. Y. Deng, " A Control Method for Flexible Transfer Converter to Enable Autonomous Control of AC Microgrids," 2022 IEEE

Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022.

PEREC

Other Issues for Advanced Coordinative Control

- Decoupling of the two power channels
- Precise voltage amplitude control for complex network
- Dynamic power sharing
- Small-signal stability

Plug-and-Play Grid-Organizing Framework

- The merits of today's power grid
 - A few big non-electronic producers dominate a grid
 - Plug and play
 - Does not usually need real-time communications
 - Steady-state operating point determined by
 - Coordination among the big producers
 - Loaded/regenerated power of each load and small producer
 - Stability determined by the big producers

Plug-and-Play Grid-Organizing Framework

The really critical challenge for future power grids

- High ratio of big electronic producers at large grid level
- Numerous small electronic or non-electronic producers, consumers, and prosumers at micro-grid level
- Frequent disconnection and re-connection between micro-grid and large grid

To develop a framework of standards specifying structure and working state of micro-grids, and terminal characteristics of each electronic producer/consumer/router to preserve the merits of traditional grids

Plug-and-Play Grid-Organizing Framework

To ensure

- Coordinated steady-state operating points of all the producers
 - Coordinative control for producers to ensure adequate power sharing and, if in islanded mode, voltage and frequency regulation
- Stability
- Smooth and fast transfer of micro-grids between islanded mode and grid-connected mode
- Plug and play
- NOT rely on communications → autonomous
- Compatible with non-electronic part

References

- [1] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids," *IEEE Trans. Power Electron.*, vol. 27, pp. 4734–4749, Nov. 2012.
- [2] K. D. Brabandere, B. Bolsens, J. V. d. Keybus, A. Woyte, J. Driesen, and R. Belmans, "A Voltage and Frequency Droop Control Method for Parallel Inverters," *IEEE Trans. Power Electron.*, vol. 22, no. 4, pp. 1107-1115, 2007.
- [3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. Vicuna, and M. Castilla, "Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization," *IEEE Trans. Ind. Electron.*, vol. 58, no. 1, pp. 158-172, Jan. 2011.
- [4] M. Yazdanian and A. Mehrizi-Sani, "Washout Filter-Based Power Sharing," IEEE Trans. on Smart Grid, vol. 7, no. 2, pp. 967-968, 2016.
- [5] Y. Han, H. Li, L. Xu, X. Zhao, and J. M. Guerrero, "Analysis of Washout Filter-Based Power Sharing Strategy—An Equivalent Secondary Controller for Islanded Microgrid Without LBC Lines," *IEEE Trans. on Smart Grid*, vol. 9, no. 5, pp. 4061-4076, 2018.
- [6] J. M. Guerrero, J. Matas, L. G. D. Vicuna, M. Castilla, and J. Miret, "Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters," *IEEE Trans. Ind. Electron.*, vol. 53, no. 5, pp. 1461–1470, Oct. 2006.
- [7] T. Wu, Z. Liu, J. Liu, B. Liu, S. Wang, "Small AC Signal Droop Based Secondary Control for Microgrids," *31st Annual IEEE Appl. Power Electron. Conf. Expo.*, 2016, pp. 3370-3375.
- [8] B. Liu, T. Wu, Z. Liu and J. Liu, "A Small-AC-Signal Injection-Based Decentralized Secondary Frequency Control for Droop-Controlled Islanded Microgrids," *IEEE Trans. Power Electron.*, vol. 35, no. 11, pp. 11634-11651, Nov. 2020.
- [9] H. Mahmood, D. Michaelson, and J. Jiang, "Accurate Reactive Power Sharing in an Islanded Microgrid Using Adaptive Virtual Impedances," *IEEE Trans. Power Electron.*, vol. 30, pp. 1605–1617, Mar. 2015.
- [10] P. T. Cheng, C. A. Chen, T. L. Lee, and S. Y. Kuo, "A Cooperative Imbalance Compensation Method for Distributed-Generation Interface Converters," *IEEE Trans. Ind. Appl.*, vol. 45, no. 2, pp. 805-815, Mar. 2009.
- [11] A. Tuladhar, H. Jin, T. Unger, and K. Mauch, "Control of parallel inverters in distributed AC power systems with consideration of line impedance effect," *IEEE Trans. Ind. Appl.*, vol. 36, no. 1, pp. 131-138, Jan. 2000.
- [12] B. Liu, Z. Liu, J. Liu, R. An, H. Zheng, and Y. Shi, "An Adaptive Virtual Impedance Control Scheme Based on Small-AC-Signal Injection for Unbalanced and Harmonic Power Sharing in Islanded Microgrids," *IEEE Trans. Power Electron.*, vol. 34, no. 12, pp. 12333-12355, 2019.
- [13] R. An, Z. Liu, J. Liu and B. Liu, "A Comprehensive Solution to Decentralized Coordinative Control of Distributed Generations in Islanded Microgrid Based on Dual-Frequency-Droop," *IEEE Trans. Power Electron.*, vol. 37, no. 3, pp. 3583-3598, March 2022.

References

- [14] K. D. Brabandere, B. Bolsens, J. V. d. Keybus, A. Woyte, J. Driesen, and R. Belmans, "A Voltage and Frequency Droop Control Method for Parallel Inverters," *IEEE Trans. Power Electron.*, vol. 22, no. 4, pp. 1107-1115, 2007.
- [15] *IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems*, IEEE Std 519-2014 (revision of IEEE Std 519-1992), 2014.
- [16] Z. Bing, K. J. Karimi and J. Sun, "Input Impedance Modeling and Analysis of Line-Commutated Rectifiers," *IEEE Trans. Power Electron.*, vol. 24, no. 10, pp. 2338-2346, Oct. 2009.
- [17] R. An, Z. Liu and J. Liu, "Successive-Approximation-Based Virtual Impedance Tuning Method for Accurate Reactive Power Sharing in Islanded Microgrids," *IEEE Trans. Power Electron.*, vol. 36, no. 1, pp. 87-102, Jan. 2021.
- [18] J. Kwon, S. Yoon and S. Choi, "Indirect Current Control for Seamless Transfer of Three-Phase Utility Interactive Inverters," in IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 773-781, Feb. 2012.
- [19] Z. Liu and J. Liu, "Indirect Current Control Based Seamless Transfer of Three-phase Inverter in Distributed Generation," *IEEE Transactions on Power Electronics*, vol. 29, no. 7, pp. 3368–3383, Jul. 2014.
- [20] X. Meng, Z. Liu, H. Zheng, and J. Liu, "A Universal Controller Under Different Operating States for Parallel Inverters With Seamless Transfer Capability," *IEEE Transactions on Power Electronics*, vol. 35, no. 9, pp. 9796–9814, Sep. 2020.
- [21] F. Nejabatkhah and Y. W. Li, "Overview of Power Management Strategies of Hybrid AC/DC Microgrid," *IEEE Transactions on Power Electronics*, vol. 30, no. 12, pp. 7072-7089, Dec. 2015
- [22] A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, "Interlinking converters and their contribution to primary regulation: a review," Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019.
- [23] I. U. Nutkani, P. C. Loh, and F. Blaabjerg, "Distributed Operation of Interlinked AC Microgrids with Dynamic Active and Reactive Power Tuning," *IEEE Trans. on Ind. Applicat.*, vol. 49, no. 5, pp. 2188–2196, Sep. 2013.
- [24] N. Bilakanti, D. Divan and F. Lambert, "A Novel Approach for Bump-less Connection of Microgrids with the Grid," 2019 IEEE Decentralized Energy Access Solutions Workshop (DEAS), 2019, pp. 207-212.
- [25] R. An, J. Liu, Z. Liu and Z. Song, "Flexible Transfer Converters Enabling Autonomous Control and Power Dispatch of Microgrids," *IEEE Trans. Power Electron.*, vol. 37, no. 11, pp. 13767-13781.

Thank you!

For questions, contact me at jjliu@xjtu.edu.cn